EE221 Physical Optics and Concepts of Modern Physics (4-0)

2019 Fall, Monday: 8:45-10:30 / Wednesday: 8:45-10:30

<u>Text Books:</u> Physics for Scientists & Engineers

A strategic approach with Modern Physics 4th edition Randall D. Knight Pearson

Fundamentals of Physics, Extended

Tenth edition D. Halliday, R. Resnick, J. Walker John Wiley & Sons, Inc.

Physics for Scientists & Engineers with Modern Physics

Douglas C. Giancoli Prentice Hall

Additional Reading:

Işığın Öyküsü 2007

Prof.Dr. Hüseyin Gazi Topdemir Tübitak, Fizik

Fundamentals of Photonics 2007

B.E.A. Saleh, M.C. Teich Wiley-Interscience

Optics and Photonics 2008

F.Graham Smith Terry A. King Dan Wilkins John Wiley and Sons Ltd.

Course Coordinator: Dr. Kıvılcım Yüksel Aldoğan (office hours: Wednesday, 10:30-12:00) Assistants: Enes Ataç (Office Hrs: Wednesday 11:00-12:00, Thursday 15:30-16:30), Ertunga B. Koçal (Office Hrs: Monday 10:30-12:30), Çağın Ekici (Office Hrs: Tuesday 9:00-10:00, Wednesday 11:00-12:00).

Grading

Students are expected to attend at least 70% of the lectures and problem sessions

Contents

- 1) Maxwell's Equations and Electromagnetic Waves
 - a. Maxwell's equations
 - b. Wave equation
 - c. Electromagnetic wave spectrum
 - d. Poynting vector
 - e. Polarization (Jones Matrices)
- 2) Interference: Light as a Wave
 - a. Review of Ray model of light (reflection, refraction, dispersion, matrix method)
 - b. Huygens Principle and Diffraction
 - c. Interference
 - d. Coherence
 - e. Luminous Intensity
- 3) Diffraction
 - a. Diffraction by a single slit
 - b. Diffraction in the double slit experiment
 - c. Limits of resolution
 - d. Diffraction grating
- 4) Special Theory of Relativity
 - a. Galilean-Newtonian Relativity
 - b. Postulates of the Special Relativity
 - c. Simultaneity, Time dilation and the Twin Paradox
 - d. Length Contraction
 - e. Four-Dimensional Space Time
 - f. Lorentz Transformation
 - g. Relativistic Momentum and Mass
 - h. Energy and Mass
 - i. Doppler Shift for Light
- 5) Photon Theory of Light
 - a. Planck's Quantum Hypothesis
 - b. Photon Theory and Photoelectric Effect
 - c. Photons and Compton Effect
 - d. Photon Interaction; Pair Production
 - e. Wave Nature of Matter
- 6) Introduction to Quantum Theory
 - a. Quantum approach
 - b. The wave function and its interpretation
 - c. Double Slit Experiment
 - d. The Heisenberg Uncertainty Principle
 - e. Probability versus Determinism
 - f. The Schrödinger Equation in One Dimensional-Time independent

Course plan:

Week-1	Maxwell's Equations and Electromagnetic Waves	K. Yüksel
Week-2/1	Maxwell's Equations and Electromagnetic Waves	K. Yüksel
Week-2/2	Problem session-I (Maxwell Eqn.)	E.B. Koçal
Week-3	Interference: Light as a Wave	K. Yüksel
Week-4	Diffraction	K. Yüksel
Week-5/1	Applications of diffraction	K. Yüksel
Week-5/2	Problem session-II (Interference, diffraction)	E.B. Koçal
Week-6/1	QUIZ-1	E.B.K, E.A, Ç. E
Week-6/2	Review, Intro to Special Theory of Relativity	K. Yüksel
Week-7	Special Theory of Relativity	K. Yüksel
Week-8/1	Problem session-III (Special relativity)	E. Ataç
Week-8/2	Problem session-IV (Special relativity)	E. Ataç
Week-9/1	QUIZ-2	E.B.K, E.A, Ç. E
Week-9/2	MIDTERM	E.B.K, E.A, Ç. E
Week-10	Photon Theory of Light	K. Yüksel
Week-11	Photon Theory of Light	K. Yüksel
Week-12/1	Problem Session-V (Photon theory of light)	Ç. Ekici
Week-12/2	Introduction to Quantum Theory	K. Yüksel
Week-13	Quantum Theory	K. Yüksel
Week-14	QUIZ-3	E.B.K, E.A, Ç. E
Week-15/1	Problem Session-VI (Quantum theory)	Ç. Ekici
Week-15/2	Quantum Theory	K. Yüksel
Week-16	FINAL	E.B.K, E.A, Ç. E

Note

The instructor reserves the right to make changes to this syllabus as necessary.